JDI’s Business and Core Display Technology

Akio Takimoto, Ph.D.
Division Manager
Research and Development Center

January 22, 2016
Agenda

• Market Trend and JDI’s Business Development
• JDI’s Core Strategy
• Technology Strategy
 – Core Display Technology: LTPS
 – Smartphones
 – Automotive Electronics
 – Reflective Displays for Wearables/Outdoor Use
Market Trend and JDI’s Business Development
Size Forecasts for Target Market

Growth forecasts for the entire target market

(Trillion yen)

New market
Signage
Industrial
Automotive electronics
Smartphones

Source: JDI’s estimates based on research company data
Create 3 Business Pillars to Provide a Solid Business Base

Mobile business reaching maturity; grow auto business & nourish new 3rd pillar; move to 30% non-mobile sales ratio

- **Mobile business**: Volatile demand
- **3rd business (Reflective)**: Business building
- **Auto business**: Stability
- **4th business (OLED)**

- **Volume (# of sheets)**
 - Smartphones
 - Top: High-res HUD
 - Bttm: Curved displays

- **Margin**
 - Wearables
 - (reflective)
 - Digital signage
 - (reflective)
 - e-POP
 - (reflective)

Earnings

Year

2020

Auto business reaching maturity, grow auto business & nourish new 3rd pillar; move to 30% non-mobile sales ratio.

- **Mobile business**: Volatile demand
- **3rd business (Reflective)**: Business building
- **Auto business**: Stability
- **4th business (OLED)**

- **Volume (# of sheets)**
 - Smartphones
 - Top: High-res HUD
 - Bttm: Curved displays

- **Margin**
 - Wearables
 - (reflective)
 - Digital signage
 - (reflective)
 - e-POP
 - (reflective)
JDI’s Core Strategy
LTPS is the basis for various types of displays

LTPS: Low Temperature Polycrystalline Silicon
LCD: Liquid Crystal Display
OLED: Organic LED
JDI is the lead global supplier of LTPS devices

LTPS-LCD capacity as of end-FY16

K sheets / Months (G4.5 equiv.)

JDI produces all CMOS-LTPS.

Source: JDI estimates based on research firm reports.
JDI’s Technology Growth Strategy

LTPS is the core technology for JDI’s product development

Smartphones, Tablet PCs

- High resolution/Low power consumption/In-cell touch
- Design improvement: Mass production of sheet OLED in CY18

Automotive Electronics

- High resolution/in-cell touch/curved displays/rapid response time displays (no delays)

Reflective

(Industrial devices/electronic shelf labels/signage, etc.)

- Ultra low-power consumption display with MIP (Memory-in-Pixel)

Copyright © 2016 Japan Display Inc. All Rights Reserved.
Technology Strategy
Basic Principles of Display Technology

An image is shown with pixels arranged in a matrix.

Changing images numerous times each second results in picture motion.

Changing the brightness of each sub-pixel reproduces every color in a pixel.
JDI’s core technology: LTPS

LTPS is used in display panels as TFTs (Thin Film Transistors).

LTPS TFTs on glass substrate

LTPS TFTs on film substrate
(For sheet display)
LTPS and Devices

LTPS is a basic technology for various devices

Front-plane
- LCD

Back-plane
- LTPS
- Backlight

Transmissive LCD
Reflective LCD
OLED
Device X
Display uses multiple TFTs. LTPS, one TFT solution type, is JDI’s core technology.
Reflective LCD Structure and TFT

- Reflective electrode
- Memory circuit
- Substrate
- Liquid crystal
- Polarizer
- Light
- Reflective electrode, Memory circuit
- Color filter (R/G/B)
- Common electrode
- Drive circuit
- Cross-sectional view
- Expanded overhead view
- SRAM memory circuit
OLED Structure and TFT

Cross-sectional view

- Substrate
- Organic light emitting layer (R/G/B)
- Electrode, TFT
- Drive circuit

Expanded overhead view

- Display area (pixels)
- Border (drive circuit)
Transistor Technology Comparison

- LTPS has higher electron mobility than other TFT technologies

Voltage and Electrical Current Characteristics

<table>
<thead>
<tr>
<th>Mobility, μ cm²/Vs</th>
<th>Technology / Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-16}</td>
<td>Crystal Si (Ref.)</td>
</tr>
<tr>
<td>10^{-15}</td>
<td>LTPS</td>
</tr>
<tr>
<td>10^{-14}</td>
<td>CMOS</td>
</tr>
<tr>
<td>10^{-13}</td>
<td>NMOS</td>
</tr>
<tr>
<td>10^{-12}</td>
<td>a-Si</td>
</tr>
<tr>
<td>10^{-11}</td>
<td>LTPS</td>
</tr>
<tr>
<td>10^{-10}</td>
<td>a-Si</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>LTPS</td>
</tr>
<tr>
<td>10^{-8}</td>
<td>a-Si</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>LTPS</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>a-Si</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>LTPS</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>a-Si</td>
</tr>
</tbody>
</table>

LTPS TFT functions in small sizes.
LTPS realizes high resolution, low power consumption

→ Since a large aperture ratio enables more use of light power consumption can be lower (or brightness enhanced).
LTPS realizes narrow border

LTPS enables small-size TFT & fabrication of smaller gate circuits

Border width (mm)

Resolution (ppi)

200 400 600 800

LTPS

a-Si

5” Full-HD (443ppi)

Bigger display, impressive design quality

Narrow border
Evolution of Productivity (Mother Glass Size)

G6 Glass Substrate

- No. of transistors (FHD)
 6.22mn pixels per smartphone x 320 units
 = 2bn transistors

- Processing accuracy
 Long side of substrate:
 approx. 1.8m
 Processing accuracy:
 several μm

Substrate accuracy = 1ppm
JDI’s Technology Growth Strategy

LTPS is the core technology for JDI’s product development

Smartphones, Tablet PCs

- High resolution/Low power consumption/In-cell touch
- Design improvement: Mass production of sheet OLED in CY18

Automotive Electronics

- High resolution/in-cell touch/curved displays/rapid response time displays (no delays)

Reflective

- Ultra low-power consumption display with MIP (Memory-in-Pixel)

Copyright © 2016 Japan Display Inc. All Rights Reserved.
High Resolution ··· LTPS
Resolution (Ergonomic Evaluation)

Up to 800 ppi recognizable (Visual range 22 cm)

Resolution (ppi)

Limits of pixel detection by eye

Human eye cannot detect the pixels.

LTPS can support >800 ppi displays

Conditions

- Viewing distance: 25 cm
- Viewing angle: normal to the display
- Subjects: 5 females and 17 males
- Luminance: 200 cd/m² (L* = 100%)

Y. Hisatake et al., P-145, SID 2012

Making characters legible requires high resolution

Character height*:
- Main text: 3 mm (9 points)
- Footnotes: 2 mm (6 points)

*Standard text height of Japanese paperback
Smartphone Display Trends

- Rapid evolution of display size, no. of pixels, resolution, etc.

2012 Oct. MP start (Full-HD)

- Display technology: Transmissive IPS, LTPS TFT
- Screen size: 5.0-inch (12.6cm) diagonal
- Number of pixels: 1080 x 1920
- Pixel density: 443 ppi
- Contrast ratio: 1000:1
- NTSC ratio: 71%
- Luminance: 500 cd/m²
- Dimensions: 64.3mm (W) x 118.8mm (H) x 1.4mm (D)
- Side border: 1.2mm

Development (4K2K *1)

- Display technology: Transmissive IPS, LTPS TFT
- Screen size: 5.5-inch (13.9cm) diagonal
- Number of pixels: 2160 x 3840 *1
- Pixel density: 806 ppi *2
- Contrast ratio: 1000:1
- NTSC ratio: 93%
- Luminance: 500cd/m²
- Dimensions: 69.8mm (W) x 128.9mm (H) x 1.9mm (D)
- Side border: 0.9mm

*1: 2160x3840 with sub pixel rendering (Image resolution based on ICDM standard)
*2: Vertical
Application Product of High Resolution Technology for Smartphone

8K4K Display for professional use

Specifications

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen size</td>
<td>17.3 inch</td>
</tr>
<tr>
<td>Resolution format</td>
<td>7,680 x RGB x 4,320</td>
</tr>
<tr>
<td>Pixel density</td>
<td>510 ppi</td>
</tr>
<tr>
<td>Luminance</td>
<td>250 cd/m²</td>
</tr>
<tr>
<td>Contrast ratio</td>
<td>2,000:1</td>
</tr>
<tr>
<td>Color gamut</td>
<td>70%</td>
</tr>
<tr>
<td>Frame rate</td>
<td>120Hz</td>
</tr>
<tr>
<td>LCD drive system</td>
<td>IPS-NEO</td>
</tr>
</tbody>
</table>

Image: Courtesy of NHK

Joint development with NHK
Low Power Consumption

・・・ Low Frequency Drive
Advanced LTPS Low Frequency Drive

Advanced LTPS: LTPS technology which reduces current leakage

<table>
<thead>
<tr>
<th></th>
<th>FY2015</th>
<th>FY2016</th>
<th>FY2017</th>
<th>FY2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive frequency</td>
<td>60Hz</td>
<td>30Hz</td>
<td>15~5Hz</td>
<td></td>
</tr>
<tr>
<td>LTPS (Gen.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>advanced LTPS (Gen.2)</td>
<td>MP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>advanced LTPS (Gen.3)</td>
<td></td>
<td>MP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Circuit electricity

Power $\propto f \times V^2$

- Gen.1: 200 mW
- Gen.2: 140 mW
- Gen.3: 80 mW

Flicker (15Hz)
In-cell touch Technology
Sensor electrodes (Tx & Rx) are formed in LCD cells and controlled by an LTPS circuit.

Advantages: thin, high sensitivity, low cost
“Pixel Eyes” has advantages over other in-cell touch technology & can support next-generation touch interfaces.

<table>
<thead>
<tr>
<th>Pixel Eyes™</th>
<th>Other type in-cell touch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover glass</td>
<td>Cover glass</td>
</tr>
<tr>
<td>Color filter sub.</td>
<td>Color filter substrate</td>
</tr>
<tr>
<td>TFT substrate</td>
<td>TFT substrate</td>
</tr>
<tr>
<td>Rx</td>
<td>Rx/Tx</td>
</tr>
<tr>
<td>Tx</td>
<td></td>
</tr>
</tbody>
</table>

- ✓ High immunity to external noise thanks to the shield layer on color filter glass.
- ✓ Lower touch power in sleep mode
- ✓ Touch FPC required

- ✓ Vulnerable to external noise because the sensor electrodes are electrically floating.
- ✓ Higher touch power in sleep mode
- ✓ Touch FPC not required
“Pixel Eyes” continues to evolve

Gen. 2
Narrow boarder
Real Black
Water tracking
Multi-touch
Stylus pen input
Brush Writing

Gen. 3
Next generation UI
Curved
Frameless
Low power by new driving method
Edge display
Hovering

Gen. 4
Sensing function
and more . . .
OLED Technology
LCD vs OLED Structure and Display Principles

<table>
<thead>
<tr>
<th></th>
<th>LCD</th>
<th>OLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display principles</td>
<td>【Transmission type・voltage driving】
LCD uses the light modulating properties of liquid crystal.</td>
<td>【Light emission type・current driving】
Excitation formation by electron-hole recombination</td>
</tr>
<tr>
<td>Structure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Front plane
- **Liquid crystal**

Back plane
- **TFT (LTPS)**

Substrate
- **Mainly glass**

Backlight
- **Required for transmissive LCD**
- **Unnecessary**
LCD vs OLED

- LCD suitable for high pixel density; OLED suitable for flexibility
- Advanced LTPS technology realizes low-power OLED

<table>
<thead>
<tr>
<th></th>
<th>LCD</th>
<th>OLED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LTPS</td>
<td>Advanced LTPS</td>
</tr>
<tr>
<td>Pixel density</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excellent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(600ppi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>Fair</td>
<td>Excellent</td>
</tr>
<tr>
<td>Design “Flexible”</td>
<td></td>
<td>Poor</td>
</tr>
<tr>
<td>(need backlight)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Narrow Border</td>
<td></td>
<td>Excellent</td>
</tr>
<tr>
<td>In cell touch technology</td>
<td></td>
<td>Excellent</td>
</tr>
<tr>
<td>(currently on cell or film method)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliability</td>
<td></td>
<td>Excellent</td>
</tr>
<tr>
<td>Cost</td>
<td></td>
<td>Excellent</td>
</tr>
</tbody>
</table>
Prototype OLEDs using flexible film substrate

- **Notebook type**
- **Bangle type**
 - With touch function
- **Projection type**
JDI’s Technology Growth Strategy

LTPS is the core technology for JDI’s product development

<table>
<thead>
<tr>
<th>Smartphones, Tablet PCs</th>
<th>Advanced LTPS technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>• High resolution/Low power consumption/In-cell touch</td>
<td></td>
</tr>
<tr>
<td>• Design improvement: Mass production of sheet OLED in CY18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Automotive Electronics</th>
<th>Curved & rapid response displays with LTPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• High resolution/in-cell touch/curved displays/rapid response time displays (no delays)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reflective</th>
<th>LTPS memory technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Industrial devices/electronic shelf labels/signage, etc.)</td>
<td></td>
</tr>
<tr>
<td>• Ultra low-power consumption display with MIP (Memory-in-Pixel)</td>
<td></td>
</tr>
</tbody>
</table>
A variety of display types in automobiles

Automotive market needs for low-power consumption and narrow borders will drive the technology shift toward LTPS.
Curved panel technology for automobile
Curved or non-rectangular shape automotive displays

Integrate in-cell gate drive circuits using LTPS technology
Easier to make curved or non-rectangular shapes

Concave Convex S shape Non-rectangular shape

Driver IC location only on one side → Easier to make curved or non-rectangular shapes

LTPS S-Dr LTPS S-Dr
Quick response system technology for digital mirrors
Digital Mirrors

- LTPS technology supports a higher frame frequency (60Hz → 240Hz) to eliminate blurring & increase safety

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>Prototype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blurring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC response speed</td>
<td>20ms</td>
<td>8ms</td>
</tr>
<tr>
<td>Frame frequency</td>
<td>60Hz</td>
<td>240Hz</td>
</tr>
<tr>
<td>Signal delay from camera to display</td>
<td>100ms</td>
<td>4ms</td>
</tr>
</tbody>
</table>
JDI’s Technology Growth Strategy

LTPS is the core technology for JDI’s product development

Smartphones, Tablet PCs
- High resolution/Low power consumption/In-cell touch
- Design improvement: Mass production of sheet OLED in CY18

Automotive Electronics
- High resolution/in-cell touch/curved displays/rapid response time displays (no delays)

Reflective
- (Industrial devices/electronic shelf labels/signage, etc.)
 - Ultra low-power consumption display with MIP (Memory-in-Pixel)

Advanced LTPS technology

Curved & rapid response displays with LTPS

LTPS memory technology
Ultra-low power consumption Reflective LCD

- Backlight power consumption unnecessary
- Memory in Pixel (MIP) saves more power

- Each pixel has build-in-memory (SRAM)
- Data writing to memory for each frame unnecessary as each pixel holds data.
- Uses LTPS-CMOS technology

Power consumption of reflective LCD and MIP
Outdoor Visibility (Photo)

Photos of same outdoor menu illuminated by 50,000 lux

Reflective color LCD

Transmissive color LCD

25-inch FHD

Brightness: 270cd/m²
Reflective Color LCD Applications

Wearable devices
- 1.34"
- 1.2"
- 1.39"
- 0.99"

Special-purpose PC monitors/readers

Industrial devices

Digital signage

ESL*・POP

*ESL: Electronic shelf label
Just between you and the world