SPECIFICATION

[Product Name : LPM027M128C]
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5 DISPOSAL</td>
<td>33</td>
</tr>
<tr>
<td>14.6 OTHERS</td>
<td>33</td>
</tr>
<tr>
<td>15. OUTLINE DRAWING</td>
<td>34</td>
</tr>
</tbody>
</table>
1. BASIC SPECIFICATIONS

This product is the System on the Glass display with SPI (Serial Peripheral Interface) featuring MIP (Memory In Pixel) function which is low power technology.

This display is the reflective LCD, therefore the specification is defined in reflective mode only unless otherwise specified in this specification sheet.

1.1 STRUCTURES

<table>
<thead>
<tr>
<th>No.</th>
<th>FACTOR</th>
<th>SPECIFICATIONS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LCD structure</td>
<td>LTPS (Memory in Pixel type)</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Outward *1 (W x H x D)</td>
<td>61.8 x 40.08 x (2.2) *1</td>
<td>mm</td>
</tr>
<tr>
<td>3</td>
<td>Weight</td>
<td>9.7</td>
<td>g</td>
</tr>
<tr>
<td>4</td>
<td>Screen size</td>
<td>58.8 (H) x 35.28 (V) (2.70 inch)</td>
<td>mm</td>
</tr>
<tr>
<td>5</td>
<td>Number of pixels</td>
<td>96,000 (400 x RGB x 240)</td>
<td>pixel</td>
</tr>
<tr>
<td>6</td>
<td>Interface</td>
<td>SPI (Serial Peripheral Interface)</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Dot pitch (Horizontal x Vertical)</td>
<td>0.049 x 0.147</td>
<td>mm</td>
</tr>
<tr>
<td>8</td>
<td>Dot layout</td>
<td>RGB stripe</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Number of colors</td>
<td>8 colors</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Liquid crystal mode</td>
<td>ECB normally black (Reflective type)</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Polarizer</td>
<td>Hard Coat type (*Pencil Hardness: 2H)</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Light source type</td>
<td>Backlight with white LED (4chips *2)</td>
<td>-</td>
</tr>
</tbody>
</table>

*1) Excluding FPC and part of protruding. See Outline Drawing for details.
*2) Each LED is connected in parallel in Backlight-FPC.
1.2 BLOCK DIAGRAM

The block diagram of a panel is shown below.

1.2.1 Pin layout and Internal circuit

Viewing in front of a LCD panel

Circuit of Backlight with white LED
1.3 DISPLAY ADDRESS MAP AND PIXEL LAYOUT

Pixels indicated “RGB” are displayed
Number of active pixels: 400 x RGB x 240 dot
(Viewing in front of a LCD panel)
H1…400 x RGB : Horizontal line
V1…240 : Vertical line
1.4 I/O PINS

1.4.1 LCD FPC

<table>
<thead>
<tr>
<th>PIN</th>
<th>SYMBOL</th>
<th>FUNCTION</th>
<th>I/O</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SCLK</td>
<td>Serial Clock Signal</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SI</td>
<td>Serial Data Input Signal</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SCS</td>
<td>Chip Select Signal</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EXTCOMIN</td>
<td>COM Inversion Signal Input</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DISP</td>
<td>Display ON/OFF Switching Signal</td>
<td>I</td>
<td>(*1-1)</td>
</tr>
<tr>
<td>6</td>
<td>VDDA</td>
<td>Power Supply for Analog</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>VDD</td>
<td>Power Supply for Logic</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>EXTMODE</td>
<td>COM Inversion Mode Select Terminal</td>
<td>I</td>
<td>(*1-2)</td>
</tr>
<tr>
<td>9</td>
<td>VSS</td>
<td>Logic Ground</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>VSSA</td>
<td>Analog Ground</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

P: Power supply, I: Input

Note)

(1-1) ON/OFF signal is only for display. Data memory is kept also at the time of ON/OFF.

H: Data memory is displayed.

L: Black color is displayed with data memory kept.

(1-2)

H: Enable EXTCOMIN signal, connect to VDD.

L: Enable serial input flag, connect to VSS.

Recommended circuit
EXTMODE=L : COM Signal Serial Input
EXTMODE=H : COM Signal External Input

External circuit example

Japan Display Inc.
1.4.2 Backlight FPC

<table>
<thead>
<tr>
<th>PIN</th>
<th>SYMBOL</th>
<th>FUNCTION</th>
<th>I/O</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cathode</td>
<td>Power supply for LED backlight</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cathode</td>
<td>Power supply for LED backlight</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cathode</td>
<td>Power supply for LED backlight</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cathode</td>
<td>Power supply for LED backlight</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Anode</td>
<td>Power supply for LED backlight</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

2. ABSOLUTE MAXIMUM RATINGS (VSS=0V)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>RATINGS</th>
<th>UNIT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage Analog</td>
<td>VDDA</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Power supply voltage Logic</td>
<td>VDD</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input signal voltage High</td>
<td>VIH</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>RATINGS</th>
<th>UNIT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature range</td>
<td>Topr</td>
<td>-20～70</td>
<td>℃</td>
<td>(*)2-1</td>
</tr>
<tr>
<td>(LCD panel surface)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>Tstg</td>
<td>-30～80</td>
<td>℃</td>
<td>(*)2-1</td>
</tr>
<tr>
<td>LED forward current</td>
<td>Iled</td>
<td>30</td>
<td>mA</td>
<td>(*)2-2</td>
</tr>
</tbody>
</table>

Note)

(*2-1): Maximum humidity is defined as follows:

Ta≤40℃ : 85%RH Max.

Ta> 40℃ : Absolute humidity needs to be equal or less than the numeric value at the condition
of Ta=40℃, 85%RH.

Don't condense dew.

(*2-2): Ambient Temperature vs Allowable Forward Current is due to the following graph.
3. OPERATING CONDITIONS

3.1 POWER SUPPLY VOLTAGE AND INPUT SIGNALS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>UNIT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage Analog</td>
<td>VDD</td>
<td>2.7</td>
<td>3.0</td>
<td>VDD</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VSS</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Power supply voltage Logic</td>
<td>VDD</td>
<td>2.7</td>
<td>3.0</td>
<td>3.3</td>
<td>V</td>
<td>(*3-1)</td>
</tr>
<tr>
<td></td>
<td>VSS</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>V</td>
<td>(*3-2)</td>
</tr>
<tr>
<td>Input signal voltage High</td>
<td>VIH</td>
<td>VDD-0.1</td>
<td>3.0</td>
<td>VDD</td>
<td>V</td>
<td>(*3-3)</td>
</tr>
<tr>
<td>Input signal voltage Low</td>
<td>VIL</td>
<td>VSS</td>
<td>VSS</td>
<td>VSS+0.1</td>
<td>V</td>
<td>(*3-3)</td>
</tr>
<tr>
<td>Backlight forward voltage</td>
<td>VF</td>
<td>(2.64)</td>
<td>(2.68)</td>
<td>(2.74)</td>
<td>V</td>
<td>(*3-4)</td>
</tr>
</tbody>
</table>

Note)
(*3-1) Apply to EXTMODE="H"
(*3-2) Apply to EXTMODE="L"
(*3-3) Apply to SCLK, SI, SCS, DISP, EXTCOMIN
(*3-4) IF: Equivalent to 4 (mA/each LED)

4. ELECTRICAL CHARACTERISTICS

4.1 POWER CONSUMPTION

Ta=25°C
Driving Condition : VDD=3.0V,VDDA=3.0V,VIH=3.0V,VIL=0V, Data update frequency=1Hz, COM frequency=0.5Hz

<table>
<thead>
<tr>
<th>Mode</th>
<th>Display</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>UNIT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>No update mode</td>
<td>White raster</td>
<td>-</td>
<td>5</td>
<td>105</td>
<td>uW</td>
<td></td>
</tr>
<tr>
<td>Data update mode</td>
<td>White raster</td>
<td>-</td>
<td>30</td>
<td>141</td>
<td>uW</td>
<td>3bit all lines data</td>
</tr>
</tbody>
</table>

Note)
(*4-0) Excluding LED backlight power consumption
4.2 INPUT SIGNAL CHARACTERISTICS

Ta=25°C, Driving Condition : VDD=3.0V, VDDA=3.0V, VIH=3.0V, VIL=0V

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>UNIT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock frequency</td>
<td>fSCLK</td>
<td>1.00</td>
<td></td>
<td>2.00</td>
<td>MHz</td>
<td>(*4-1)</td>
</tr>
<tr>
<td>COM frequency</td>
<td>fCOM</td>
<td>0.5</td>
<td>70</td>
<td></td>
<td>Hz</td>
<td>(*4-2)</td>
</tr>
<tr>
<td>SCS rising time</td>
<td>trSCS</td>
<td>-</td>
<td>50</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>SCS falling time</td>
<td>tfSCS</td>
<td>-</td>
<td>50</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>SCS Low width</td>
<td>twSCSL</td>
<td>6.0</td>
<td></td>
<td></td>
<td>us</td>
<td></td>
</tr>
<tr>
<td>SCS holding time</td>
<td>thSCS</td>
<td>2.0</td>
<td></td>
<td></td>
<td>us</td>
<td>(*4-3)</td>
</tr>
<tr>
<td>SI rising time</td>
<td>trSI</td>
<td>-</td>
<td>50</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>SI settling time</td>
<td>tsSI</td>
<td>200</td>
<td>450</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>SI holding time</td>
<td>thSI</td>
<td>250</td>
<td>500</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>SCLK rising time</td>
<td>trSCLK</td>
<td>-</td>
<td>50</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>SCLK falling time</td>
<td>tfSCLK</td>
<td>-</td>
<td>50</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>SCLK High width</td>
<td>twSCLKH</td>
<td>250</td>
<td>500</td>
<td></td>
<td>ns</td>
<td>(*4-4)</td>
</tr>
<tr>
<td>SCLK Low width</td>
<td>twSCLKL</td>
<td>250</td>
<td>500</td>
<td></td>
<td>ns</td>
<td>(*4-4)</td>
</tr>
<tr>
<td>EXTCOMIN frequency</td>
<td>fXTCOMIN</td>
<td>1</td>
<td></td>
<td>140</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>EXTCOMIN rising time</td>
<td>trEXTCOMIN</td>
<td>-</td>
<td></td>
<td>50</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>EXTCOMIN falling time</td>
<td>tfEXTCOMIN</td>
<td>-</td>
<td></td>
<td>50</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>EXTCOMIN High width</td>
<td>twEXTCOMIN</td>
<td>2.0</td>
<td></td>
<td></td>
<td>us</td>
<td></td>
</tr>
<tr>
<td>DISP rising time</td>
<td>trDISP</td>
<td>-</td>
<td>50</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>DISP falling time</td>
<td>tfDISP</td>
<td>-</td>
<td>50</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Note:

(*4-1) Please note that Max. fSCLK may be lowered when VDD and VDDA fall than 3.0V at a low temperature.

(*4-2) COM frequency should be around 60 Hz for transmissive mode.

(*4-3) In case of data update mode in transmissive mode, thSCS should be 50us or less.

(*4-4) twSCLKH and twSCLKL should be approximately the same length, if possible.
4.3 POWER ON/OFF SEQUENCE

[On sequence]
T1: Power supply rising time. (Depends on external power supply)
T2: Pixel memory initialization 1ms or more initialize with M2 (all clear flag)
T3: Release time for internal latch circuits. 30us or more
T4: COM polarity initialization time. 30us or more

[Normal operation]
Duration of normal operation

[Off sequence]
T5: Pixel memory initialization. Same as T2.
T6: COM and latch circuits initialization. 30us or more
T7: Power supply falling time. (Depends on external power supply)

Note)
Refer to the timing chart and electrical characteristics for details.

(*4-5) It is allowed to replace T3 and T4 mutually.
In case of starting EXTCOMIN before rising DISP, EXTCOMIN is ignored during DISP="L".
Also, it is allowed to start simultaneously DISP and EXTCOMIN.
In that case, need 100us or more (200us or less) before normal operation.

(*4-6) Pixel memory initialization.
Use M2 (all clear flag : refer to 6.8),
or write black data to all pixel memories (refer to the data update mode).

[Remark]
VDD and VDDA should rise simultaneously or VDD should rise first.
VDD and VDDA should fall simultaneously or VDDA should fall first.
5. MODE

5.1 MODE TABLE

Mode select

<table>
<thead>
<tr>
<th>M9</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>AC9</th>
<th>AC8</th>
<th>AC7</th>
<th>AC6</th>
<th>AC5</th>
<th>AC4</th>
<th>AC3</th>
<th>AC2</th>
<th>AC1</th>
<th>AC0</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L/H</td>
<td>No-Update</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L/H</td>
<td>Blinking</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L/H</td>
<td>All Clear</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L/H</td>
<td>No-Update</td>
</tr>
</tbody>
</table>

Function table

<table>
<thead>
<tr>
<th>M0=L</th>
<th>M0=H</th>
<th>M2=L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinking OFF</td>
<td>L, L</td>
<td>-</td>
</tr>
<tr>
<td>Blink Basic</td>
<td>H, L</td>
<td>L</td>
</tr>
<tr>
<td>Blink White</td>
<td>H, H</td>
<td>L</td>
</tr>
<tr>
<td>Blink Inversion</td>
<td>H, H</td>
<td>L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M0=H</th>
<th>M2=L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>M3</td>
</tr>
<tr>
<td>Blinking OFF</td>
<td>L</td>
</tr>
<tr>
<td>Blink Basic</td>
<td>H</td>
</tr>
<tr>
<td>Blink White</td>
<td>H</td>
</tr>
<tr>
<td>Blink Inversion</td>
<td>H</td>
</tr>
</tbody>
</table>

Unassigned bit: No care, it can be H or L (L is Recommended)

5.2 MODE CHART

Input S1

Mode Select

M0=H

Function Mode

Mode Select

M0=L

No Update Mode

Data Update Mode

Data bit

Data bit

Input 4bit data R/G/B/D
D : Dummy

Input 4bit data R/G/B

Data Update

Data Update

(*) Pixel memories are maintained
6. TIMING CHART AND DETAILS OF MODE

6.1 SINGLE LINE UPDATE MODE (3BIT-DATA MODE)

Mode table

<table>
<thead>
<tr>
<th></th>
<th>M0</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>L/H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Updates data of only one specified line.

M0 : Mode flag. Set "H", data update mode.
 In case of "H", outputs COM="H".
 In case of "L", outputs COM="L".
In case of EXTMODE="H", invalidate, it can be "H" or "L".
M2 : All clear flag. Set "L", data update mode.
M3-M4 : Data-bit control flag. In case of M3="L" and M4="L", 3bit-data mode.
M5 : Invalid data, it can be "H" or "L".
AG9-AG0 : Gate line address (10bit), refer to the Gate line address table.

Data : Pixel memory data. In case of "L", pixel is black.
 In case of 3bit-data mode,
 input serially the pixel data in the order of Red-Green-Blue (3bit).
n : Number of horizontal line, refer to the Display address map and Pixel layout.

Dummy data : It can be "H" or "L".

Need transfer period which is 16clocks after the last data.
M0, M2 flags are cleared by SCS="L", and M3-M4 flags are cleared by DISP="L".
6.2 MULTIPLE LINES UPDATE MODE (3BIT-DATA MODE)

M0 : Mode flag. Set "H", data update mode.
 In case of "H", outputs COM="H".
 In case of "L", outputs COM="L".
In case of EXTMODE="H", invalidate, it can be "H" or "L".
M2 : All clear flag. Set "L", data update mode.
M3-M4 : Data-bit control flag. In case of M3="L" and M4="L", 3bit-data mode.
M5 : Invalid data, it can be "H" or "L".

AG9-AG0 : Gate line address (10bit), refer to the Gate line address table.

Data : Pixel memory data. In case of "L", pixel is black.
 In case of 3bit-data mode,
 input serially the pixel data in the order of Red-Green-Blue (3bit).

n : Number of horizontal line, refer to the Display address map and Pixel layout.

Dummy data : It can be "H" or "L".

Input data continuously.

m : Number of vertical line, refer to the Display address map and Pixel layout.

Need transfer period which is 6clocks between the gate line and the next gate line.
Need transfer period which is 16clocks after the last data.
M0, M2 flags are cleared by SCS="L", and M3-M4 flags are cleared by DISP="L".
6.3 SINGLE LINE UPDATE MODE (1BIT-DATA MODE)

M0 : Mode flag. Set "H", data update mode.
 In case of "H", outputs COM="H".
 In case of "L", outputs COM="L".
 In case of EXTMODE="H", invalidate, it can be "H" or "L".
M2 : All clear flag. Set "L", data update mode.
M3-M4 : Data-bit control flag. In case of M3="L" and M4="H", 1bit-data mode.
M5 : Invalid data, it can be "H" or "L".

AG9-AG0 : Gate line address (10bit), refer to the Gate line address table.

Data : Pixel memory data. In case of "L", pixel is black.
 In case of 1bit-data mode, input the pixel data "H" or "L" (1bit).
 Pixel memories of red, green and blue are written the same data.

n : Number of horizontal line, refer to the Display address map and Pixel layout.

Dummy data : It can be "H" or "L".

Need transfer period which is 16clocks after the last data.
M0, M2 flags are cleared by SCS="L", and M3-M4 flags are cleared by DISP="L".
6.4 MULTIPLE LINES UPDATE MODE (1BIT-DATA MODE)

M0 : Mode flag. Set "H", data update mode.
 In case of "H", outputs COM="H".
 In case of "L", outputs COM="L".
 In case of EXTMODE="H", invalidate, it can be "H" or "L".
M2 : All clear flag. Set "L", data update mode.
M3-M4 : Data-bit control flag. In case of M3="L" and M4="H", 1bit-data mode.
M5 : Invalid data, it can be "H" or "L".
AG9-AG0 : Gate line address (10bit), refer to the Gate line address table.
Data : Pixel memory data. In case of "L", pixel is black.
 In case of 1bit-data mode, input the pixel data "H" or "L" (1bit).
 Pixel memories of red, green and blue are written the same data.
n : Number of horizontal line, refer to the Display address map and Pixel layout.
Dummy data : It can be "H" or "L".
Input data continuously.
m : Number of vertical line, refer to the Display address map and Pixel layout.

Need transfer period which is 6clocks between the gate line and the next gate line.
Need transfer period which is 16clocks after the last data.
M0, M2 flags are cleared by SCS="L", and M3-M4 flags are cleared by DISP="L".
6.5 SINGLE LINE UPDATE MODE (4BIT-DATA MODE)

M0 : Mode flag. Set “H”, data update mode.
 In case of “H”, outputs COM="H".
 In case of “L”, outputs COM="L".
 In case of EXTMODE="H", invalidate, it can be “H” or “L”.
M2 : All clear flag. Set “L”, data update mode.
M3 : Data-bit control flag. In case of M3="H", 4bit-data mode.
M4-M5 : Invalid data, it can be “H” or “L”.

AG9-AG0 : Gate line address (10bit), refer to the Gate line address table.

Data : Pixel memory data. In case of “L”, pixel is black.
 In case of 4bit-data mode,
 input serially the pixel data in the order of Red-Green-Blue-Dummy (4bit).

Dummy data (DUM) can be “H” or “L”.

n : Number of horizontal line, refer to the Display address map and Pixel layout.

Dummy data : It can be “H” or “L”.

Need transfer period which is 16clocks after the last data.
M0, M2 flags are cleared by SCS="L", and M3 flag is cleared by DISP="L".
6.6 MULTIPLE LINES UPDATE MODE (4BIT-DATA MODE)

M0 : Mode flag. Set "H", data update mode.
 In case of "H", outputs COM="H".
 In case of "L", outputs COM="L".
 In case of EXTMODE="H", invalidate, it can be "H" or "L".
M2 : All clear flag. Set "L", data update mode.
M3 : Data-bit control flag. In case of M3="H", 4bit-data mode.
M4-M5 : Invalid data, it can be "H" or "L".

AG9-AG0 : Gate line address (10bit), refer to the Gate line address table.

Data : Pixel memory data. In case of "L", pixel is black.
 In case of 4bit-data mode,
 input serially the pixel data in the order of Red-Green-Blue-Dummy (4bit).
Dummy data (DUM) can be "H" or "L".

n : Number of horizontal line, refer to the Display address map and Pixel layout.

Dummy data : It can be "H" or "L".

Input data continuously.

m : Number of vertical line, refer to the Display address map and Pixel layout.

Need transfer period which is 6clocks between the gate line and the next gate line.
Need transfer period which is 16clocks after the last data.
M0, M2 flags are cleared by SCS="L", and M3 flag is cleared by DISP="L".
6.7 NO-UPDATE MODE

Mode table

<table>
<thead>
<tr>
<th>M0</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>1</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>-</td>
</tr>
<tr>
<td>M0</td>
<td>M1</td>
<td>M2</td>
<td>M3</td>
<td>M4</td>
<td>M5</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>-</td>
</tr>
</tbody>
</table>

Maintains memory internal data (current display).

M0 : Mode flag.
 - In case of "H", outputs COM="H".
 - In case of "L", outputs COM="L".
 - In case of EXTMODE="H", invalidate, it can be "H" or "L".
M2 : All clear flag.
Set "L" or "H" to both M0 and M2, no-update mode.
M3 : Blinking flag. In case of "L", no-update mode and display blinking mode is terminated.
 - In case of "H", display blinking mode. Refer to 6.9 for details.
M4-M5 : Invalid data, it can be "H" or "L".

Dummy data : It can be "H" or "L".

M0, M2 flags are cleared by SCS="L", and M3 flag is cleared by DISP="L".
6.8 ALL CLEAR MODE

Clears memory internal data and writes initial data. Initial data is black.

<table>
<thead>
<tr>
<th>M0</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>LH</td>
<td>H</td>
<td>L/H</td>
<td>L/H</td>
<td>L/H</td>
</tr>
</tbody>
</table>

SCS

SI

SCLK

M0 : Mode flag. Set "L", no-update mode.
 - In case of "H", outputs COM="H".
 - In case of "L", outputs COM="L".
 - In case of EXTMODE="H", invalidate, it can be "H" or "L".
M2 : All clear flag. Set "H", all clear mode.
M3 : Blinking flag. In case of "L", display blinking mode is terminated.
 - In case of "H", display blinking mode. Refer to 6.9 for details.
M4-M5 : Blinking mode flag. In case of M3="H", validate.
 - In case of M3="L", invalidate, it can be "H" or "L".

Dummy data : It can be "H" or "L".

M0, M2 flags are cleared by SCS="L", and M3-M4 flags are cleared by DISP="L".

Display gives priority to blinking flag (M3).
6.9 DISPLAY BLINKING COLOR MODE

M0 : Mode flag. Set "L", no-update mode.
 In case of "H", outputs COM="H".
 In case of "L", outputs COM="L".
 In case of EXTMODE="H", invalidate, it can be "H" or "L".
M2 : All clear flag. Set "L", no-update mode.
 In case of "H", all clear mode. Refer to 6.8 for details.
M3 : Blinking flag. In case of "H", display blinking mode and forcibly display blinking color.
 In case of "L", no-update mode and display blinking mode is terminated.
M4 : Blinking color flag. Apply to display blinking color.
 In case of "H", display blinking color is white.
 In case of "L", display blinking color is black.
M5 : Blinking inversion flag. Set "L", blinking color mode.

Dummy data : It can be "H" or "L".
M0, M2 flags are cleared by SCS="L", and M3-M5 flags are cleared by DISP="L".

Blink display to alternate between normal display and display blinking mode.
6.10 DISPLAY COLOR INVERSION MODE

Forcibly display color inversion. Maintain memory internal data, but ignored.

<table>
<thead>
<tr>
<th>Mode</th>
<th>M0</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td></td>
<td>H</td>
</tr>
</tbody>
</table>

SCS
SI
SCLK

Mode table

M0 : Mode flag. Set “L”, no-update mode.
 In case of “H”, outputs COM=“H”.
 In case of “L”, outputs COM=“L”.
 In case of EXTMODE=“H”, invalidate, it can be “H” or “L”.
M2 : All clear flag. Set “L”, no-update mode.
 In case of “H”, all clear mode. Refer to 6.8 for details.
 In case of “L”, no-update mode and display blinking mode is terminated.
M4 : Blinking color flag. In case of M5=“H”, invalidate, it can be “H” or “L”.
 In case of M5=“L”, refer to 6.9 for details.
M5 : Color inversion flag. Set “H”, display color is inverted.
 For example, “Red” is changed to “Cyan”.
 “Cyan” is complementally color of “Red”.

Dummy data : It can be “H” or “L”.
M0, M2 flags are cleared by SCS=“L”, and M3,M5 flags are cleared by DISP=“L”.

Blink display to alternate between normal display and display blinking mode.
7. COM INVERSION

7.1 COM POLARITY SERIAL INPUT / EXTMODE = “L”

COM polarity inversion has been changed by M1 flag statement.

(*7-1) The periods of positive and negative polarity should be same length as much as possible.

7.2 EXTCOMIN SIGNAL / EXTMODE=“H”

COM polarity inversion has been changed by the rising timing of EXTCOMIN.
COM polarity (positive or negative) is controlled by internal circuit.

(*7-2) The periods of positive and negative polarity should be same length as much as possible.
8. GATE ADDRESS TABLE

V1 - V240

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>V7</th>
<th>V8</th>
<th>V9</th>
<th>V10</th>
<th>V11</th>
<th>V12</th>
<th>V13</th>
<th>V14</th>
<th>V15</th>
<th>V16</th>
<th>V17</th>
<th>V18</th>
<th>V19</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Japan Display Inc.
9. OPTICAL SPECIFICATION

9.1 OPTICAL CHARACTERISTICS

9.1.1 Reflective mode

* VDD=3.0V, VDDA=3.0V, VIH=3.0V, VIL=0V

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Temp. (°C)</th>
<th>Rating</th>
<th>Unit</th>
<th>definition (Measurement setup)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
<td>CR</td>
<td>25</td>
<td>(20)</td>
<td>40</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Response</td>
<td>tr</td>
<td>25</td>
<td>-</td>
<td>4</td>
<td>8</td>
<td>2 Black → White</td>
</tr>
<tr>
<td></td>
<td>tf</td>
<td></td>
<td>-</td>
<td>6</td>
<td>12</td>
<td>White → Black</td>
</tr>
<tr>
<td>Color coordinates</td>
<td></td>
<td>25</td>
<td>-</td>
<td>0.505</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Rx</td>
<td></td>
<td>-</td>
<td>0.310</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ry</td>
<td></td>
<td>-</td>
<td>0.302</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gx</td>
<td></td>
<td>-</td>
<td>0.448</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gy</td>
<td></td>
<td>-</td>
<td>0.162</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bx</td>
<td></td>
<td>-</td>
<td>0.176</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>By</td>
<td></td>
<td>-</td>
<td>0.315</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wx</td>
<td></td>
<td>-</td>
<td>0.302</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wy</td>
<td></td>
<td>-</td>
<td>0.340</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NTSC ratio</td>
<td></td>
<td>25</td>
<td>-</td>
<td>23</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Reflectance</td>
<td></td>
<td>25</td>
<td>(10)</td>
<td>19</td>
<td>-</td>
<td>Measurement system- I</td>
</tr>
<tr>
<td>View Angle (CR>2)</td>
<td></td>
<td>25</td>
<td>(55)</td>
<td>70</td>
<td>-</td>
<td>5 Horizontal</td>
</tr>
<tr>
<td></td>
<td>θL</td>
<td></td>
<td></td>
<td>70</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θR</td>
<td></td>
<td>(55)</td>
<td>70</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θT</td>
<td></td>
<td>(55)</td>
<td>70</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>θB</td>
<td></td>
<td>(55)</td>
<td>70</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

*() : Reference value

9.1.2 Transmissive mode

* VDD=3.0V, VDDA=3.0V, VIH=3.0V, VIL=0V, Backlight current =16mA (*9-1)

*COM frequency should be around 60 Hz for transmissive mode.

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Temp. (°C)</th>
<th>Rating</th>
<th>Unit</th>
<th>definition (Measurement setup)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightness</td>
<td>B</td>
<td>25</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>Measurement system- II</td>
</tr>
</tbody>
</table>

(*9-1) Backlight current : Equivalent to 4 (mA/each LED)
9.2 DEFINITION AND CONDITION OF OPTICAL CHARACTERISTICS

9.2.1 Definitions of optical characteristics

Definition 1
This is a ratio between the screen surface reflectance of the white raster and the black raster

\[
\text{Contrast ratio (CR)} = \frac{\text{Reflection intensity on all pixels White}}{\text{Reflection intensity on all pixels Black}}
\]

Definition 2
The response time is defined as the following figure and shall be measured by matching the input signal for “Black” and “White”.

- Normally Black mode

![Response Time Diagram]

Definition 3
This is the x-y coordinate of Red, Green, Blue and White colors specified on the CIE1931 chromaticity diagram. (* It is not a guaranteed value)

Definition 4
This is an area of a triangle shaped by R, G and B coordinates on the CIE1931 chromaticity diagram.

Definition 5
This is a maximum angle \(\theta \) from the normal direction that keeps having the contrast more than 2.

\[\theta\]

*FPC side
9.2.2 Measurement method of optical characteristics

9.2.2.1 Basic measurement conditions

a) Driving voltage
 VDD = 3.0V
 VDDA = 3.0V
 VIH = 3.0V
 VIL = 0V

b) Measurement temperature
 25°C unless otherwise specified

c) Measurement point
 Center of the Active area (one point) unless otherwise specified

9.2.2.2 Measurement system-I for reflective mode

d) Measurement equipment
 LCD-5200 (Otsuka Electronics) or equivalent

f) Light source
 Parallel light source
 ・ D65 / 2 degree viewing angle
 ・ Light source input direction: form FPC side (30°)
 ・ Light source receive direction: at LCD center (0°)
9.2.2.3 Measurement system- II for transmissive mode
10. INSPECTION

Please refer to the shipment inspection standard Ver.02 for LPM027M128C.
11. RELIABILITY TEST

11.1 CONDITIONS OF RELIABILITY AND MECHANICAL TEST

<table>
<thead>
<tr>
<th>No.</th>
<th>TEST ITEM</th>
<th>CONDITION</th>
<th>REMARK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High Temperature Storage</td>
<td>(Ta=80^\circ\mathrm{C})</td>
<td>240h</td>
</tr>
<tr>
<td>2</td>
<td>Low Temperature Storage</td>
<td>(Ta=-30^\circ\mathrm{C})</td>
<td>240h</td>
</tr>
<tr>
<td>3</td>
<td>High Temperature & High Humidity Storage</td>
<td>(Ta=60^\circ\mathrm{C}/90%\mathrm{RH}) (No condensation)</td>
<td>240h</td>
</tr>
<tr>
<td>4</td>
<td>High Temperature & High Humidity Operation</td>
<td>(Ta=40^\circ\mathrm{C}/90%\mathrm{RH}) (No condensation)</td>
<td>240h</td>
</tr>
<tr>
<td>5</td>
<td>High Temperature Operation</td>
<td>(Ta=70^\circ\mathrm{C})</td>
<td>240h</td>
</tr>
<tr>
<td>6</td>
<td>Low Temperature Operation</td>
<td>(Ta=-20^\circ\mathrm{C})</td>
<td>240h</td>
</tr>
<tr>
<td>7</td>
<td>Thermal shock (non-operating)</td>
<td>(Ta=-20^\circ\mathrm{C}) to 70%\mathrm{C}) (60min each)</td>
<td>50cycles</td>
</tr>
<tr>
<td>8</td>
<td>ESD</td>
<td>HBM IEC 61340-3-1, ESD STM5.1 (V = \pm 1.0\mathrm{kV}) (Contact) (R = 1.5\mathrm{k\Omega}, \ C = 100\mathrm{pF})</td>
<td>1 time each terminal</td>
</tr>
<tr>
<td>9</td>
<td>Shock</td>
<td>100G, 6ms, (\pm X, \pm Y, \pm Z)</td>
<td>3 times Each direction</td>
</tr>
<tr>
<td>10</td>
<td>Packing Vibration</td>
<td>Random Vibration</td>
<td>101min Direction:Z Note1</td>
</tr>
<tr>
<td>11</td>
<td>Packing Drop</td>
<td>Height 60cm, 1 corner 3 edges, 6 surfaces</td>
<td>1 time Each direction Note1</td>
</tr>
</tbody>
</table>

*Note1: Tests are conducted package..

If a nonconformance is found, both parties will have a discussion to solve it.

11.2 CRITERIA FOR JUDGEMENT

After the above tests, return samples to the normal temperature and moisture environment in the thermostat chamber room over 30 minutes not to condense. Inspect samples kept for more than 1 hour after pulling them out of the thermostat chamber room.

(1) There shall be no abnormality in the functions (Ex. No display, abnormal display, line defects).

(2) There shall be no serious degradation. (Ex. Brightness uniformity, reversible changes, optical changes. The degradation due to backlight or polarizer is ignored.)
12. DESIGNATION OF LOT MARK

Lot mark is printed on the rear of the LCD module.

<table>
<thead>
<tr>
<th>Year</th>
<th>Figure in lot mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>6</td>
</tr>
<tr>
<td>2017</td>
<td>7</td>
</tr>
<tr>
<td>2018</td>
<td>8</td>
</tr>
<tr>
<td>2019</td>
<td>9</td>
</tr>
<tr>
<td>2020</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>Figure in lot mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan.</td>
<td>A</td>
</tr>
<tr>
<td>Feb.</td>
<td>B</td>
</tr>
<tr>
<td>Mar.</td>
<td>C</td>
</tr>
<tr>
<td>Apr.</td>
<td>D</td>
</tr>
<tr>
<td>May</td>
<td>E</td>
</tr>
<tr>
<td>Jun.</td>
<td>F</td>
</tr>
<tr>
<td>Jul.</td>
<td>G</td>
</tr>
<tr>
<td>Aug.</td>
<td>H</td>
</tr>
<tr>
<td>Sep.</td>
<td>I</td>
</tr>
<tr>
<td>Oct.</td>
<td>J</td>
</tr>
<tr>
<td>Nov.</td>
<td>K</td>
</tr>
<tr>
<td>Dec.</td>
<td>L</td>
</tr>
</tbody>
</table>
13. PACKING SPECIFICATIONS

13.1 INNER CARTON

Note)
Tray orientation must be alternately arranged.
If you do not stack trays alternately, it will lead to panel damaged.
13.2 MASTER CARTON

Insert four (4) inner cartons within a master carton. Maximum quantity per a master carton : $12 \times 10 \times 4 = 480$ pcs.

(Notes)
Master carton size : W397 \times L598 \times H227 (mm). Gap is filled if necessary. Tape is applied if necessary. Tied if necessary.

Indication onto [A] [B] [C] [D] on master carton are shown as below.

Outer label
14. LCD MODULE USAGE AND PRECAUTIONS

14.1 HANDLING

(1) The display panel is made of glass. Do not subject it to mechanical shock such as dropping it from a high position, etc.
(2) If the display panel is damaged and internal liquid crystal substance leaks out, be sure not to inhale or consume it. If the internal liquid crystal substance comes into contact with skin or clothing, promptly wash it off using soap and running water.
(3) Do not apply excessive force on the surface, perimeter or adjoining areas of LCD module since this may cause display panel color tone to vary.
(4) The polarizer covering the display panel surface of the LCD module is soft and can be easily scratched. Handle this polarizer carefully.
(5) If the surface polarizer becomes contaminated, use the following recommended or equivalent adhesive tape for contaminants removal.
 • Scotch-brand mending tape (No. 810)
(6) Do not breathe on the display surface or use Ethyl Alcohol solvent for contaminant removal as polarizer discoloration may occur. Furthermore, solvent other than mentioned above may also damage the polarizer. Especially, do not use the followings.
 • Water
 • Ketones
 • Aromatic solvents
(7) When mounting the LCD Module, be sure that it is free from twisting, warping, or distortion. Any stress can have great influence to the display quality. Also, in cases where outer case or frame is included, be sure to secure sufficient stiffness on the outer case or frame for a robust design.
(8) Do not apply pressure at or around the FPC bonding area and the surrounding area.
(9) Do not attempt to disassemble or rework the LCD module.
(10) To prevent destruction of the elements by static electricity, be careful to maintain an optimum working environment.
 • Be sure to ground your body before handling the LCD module.
 • Make sure that solder guns and all other tools required for assembly have been grounded.
 • To reduce occurrence of static electricity, avoid using this product in dry environments.
 • A protective film has been attached to the surface of the LCD panel. When peeling off the protective film, be careful to prevent electrostatic discharges.
(11) To minimize performance degradation of the LCD module caused by destructive forces such as static electricity, etc., avoid direct contact to the following sections when handling the LCD module.
 • terminal electrodes of connector
 • wiring pattern on FPC
(12) LCD Panel surface is protected by a protective film layer. This protective film must be removed before final product installation. After removal of protective film layer, some adhesive residues maybe left on the LCD panel, especially after long storage period, please refer to section 5) listed above for proper contaminant removal procedure.
(13) Take precaution to minimize corrosion of electrodes. Corrosion of electrodes is accelerated by moisture, condensation or a current flow in a high-humidity environment.
(14) Do not apply excessive pressure to the FPC part. Force type such as twist, warp, etc., may damage FCP patterning traces.
(15) Do not use sharp, pointy or rigid tools when handing LCD panels. These objects can scratch or nick the glass panel which can cause it to crack.
(16) Do not touch or handle the LCD module directly with bare hands. Residue of dirt, oil or water may have the possibility to cause corrosion. Be sure to wear finger sacks or gloves when handling LCD modules. When holding an LCD panel module, carefully hold the panel by the edges of the glass plate.
(17) Avoid using LCD module under condensation or high humidity environment because polarizer etc. maybe damaged in these conditions.
(18) Trays are used to package LCD modules for shipment. If LCD modules scratch the tray during shipment, material of the scratched tray may be left on LCD modules. In such case, clean up LCD modules after removal from trays.
(19) When installing LCD module, don't apply excess stress of bending or stretching to the input cable
(20) Keep NC terminal open electrically.
(21) After storage under high humidity or condensation environment, keep LCD module under room temperature more than 30 minutes before operation.
(22) Take precautions to handling LCD module because the glass plate has very keen edges.
14.2 DESIGN OF APPLICATION

(1) The absolute maximum ratings represent the rated values which LCD module cannot exceed. When LCD modules are used beyond this rated value, the operating characteristics may be adversely affected.

(2) To prevent the occurrence of erroneous operation caused by noise, special attention on satisfying VIL, VIH specified values is required. This includes taking the precautionary measures of using short cables for signal transferring.

(3) An inherent characteristic of liquid crystal display is its temperature dependency. Be sure to use the LCD modules within the specified operating temperature range, as recognition of the display becomes difficult when the LCD module is used outside its range. Also, keep in mind that the voltage levels necessary for clear display images will vary according to temperature.

(4) It is recommended that power supply lines to include current surge protection. (Fuse etc. recommend value: 0.5A)

(5) Note the peripheral devices can cause mutual noise interference with LCD modules. Especially, input devices such as Touch Panel, etc., may output operational level by radiation noise even when these devices are not in operation. Actual performance confirmation and verification under actual usage environment by actual final product is highly recommended.

(6) To avoid EMI, preventive measures should be implemented in the final product.

(7) Display abnormality may occur with sudden removal of power supply such as device battery. Sudden removal of power supply shall be avoided at all time. LCD module quality cannot be guaranteed under such condition.

(8) Ensure sufficient light shading measures during design phase and when assemble the LCD module.

(9) Ensure sufficient light shading measures in the inspection process.

(10) Similar to general electronic components, ESD may cause LCD IC to malfunction. ESD preventive measures should be considered around the LCD module.

(11) While display data may be kept, data can be easily changed by external noise. Noise shall be minimized at device or system level.

(12) As unexpected noise may occur, periodic refresh operation such as resend the command and display data is highly recommended as part of the software routine.

(13) When logic circuit power is off, do not apply any signals to the input terminals.

(14) Do not use other components such as FPC or other features to fix the LCD module position, as pressure/tension may produce undesired result such as FPC trace crack.

14.3 DISPLAY CHARACTERISTICS

(1) Because the optimum LCD driving voltage depends on the ambient temperature, display may slightly flicker at the environment of high temperature.

(2) One of the special characteristics of liquid crystal is that it freezes when stored at the temperature below the storage temperature range. Such freezing may cause orientation defects or bubbles (black or white) to appear in the LCD panel. Bubbles may also occur if the panel receives an impact in a low-temperature environment.

(3) If the LCD module is left operating for a long time with the same display showing, the displayed pattern may leave traces on the screen or the contrast may become inconsistent.

14.4 KEEPING THE PRODUCTS

(1) When keeping LCD modules, avoid the following condition or environment.
 • Exposure to direct sunlight or fluorescent lamps lightnings.
 • High-temperature/high-humidity or very low-temperature (below 0°C) environments.
 • Exposure to water droplets, condensation, etc.

 Furthermore, keep LCD modules in anti-static bags to prevent static electricity charge ups. Whenever possible, LCD modules should be stored in the same conditions in which they were shipped from Japan Display Inc.

(2) Take precaution to minimize corrosion of electrodes. Corrosion of electrodes is accelerated by moisture, condensation or a current flow in a high-humidity environment.

(3) Recommended keeping conditions.
 • Keeping environment : +15°C to 35°C, less than 65%RH
 • Duration: up to 2 months after shipping date

(4) The shipping carton must not be stacked up over 1.5m in height.
14.5 DISPOSAL

(1) When disposing LCD modules, consult company specialized in industrial waste treatment which is permitted by the
government or local authority. When incineration is the method of LCD module disposal, law of environmental hygienic
must be obeyed.

14.6 OTHERS

(1) This product is designed to be used in ordinary electronic devices. Do not use this product in other applications,
especially in devices that may cause direct bodily damage to end users (such as weapons, military purposes, aerospace
equipment, life-support system equipment, or safety equipment).
(2) Japan Display Inc. shall not be responsible for defects that occur in this product or in equipment connected to this
product if the product is used in an environment that exceeds the ranges specified in this document, or in an
environment not described in this document.
15. OUTLINE DRAWING

Note

1) Unit : mm
2) General tolerance: +/-0.2
3) Scale: NTS
4) Unless otherwise specified, radius shall be R0.5.
5) Example of suitable FPC connector : LCD FPC FH28-10S-0.5SH(05), 10pin / Hirose.
 Backlight FPC 503480-0500, 5pin / molex.
6) There is conductive material in the end of the LCD glass. Do not contact side wall of the glass with conductive material.