JDI Announces Development of Transparent Glass-based Capacitive Fingerprint Sensor
TOKYO, Japan, January 23, 2018 - Japan Display Inc. (JDI) today announced that it has developed a transparent glass-based capacitive fingerprint sensor by applying the company's capacitive multi-touch technology used in its other liquid crystal displays (LCDs). JDI plans to start commercial shipments within its 2018 fiscal year, which ends March of 2019.
JDI is striving to enter the sensor business arena in preparation for the era of highly-developed security, and gain its new position in this non-display sector by leveraging its experience and know-how fostered through the development of low-temperature poly-silicon (LTPS) LCDs.
JDI's glass-based capacitive fingerprint sensor applies the basic touch functionality technology that is integrated in its in-cell Pixel EyesTM displays which have been used in smartphone and digital still camera applications. With Pixel EyesTM, the touch functionality is integrated into the glass substrate by detecting the changes in capacitance that occur when a finger touches the LCD surface. The glass substrate identifies the area touched by the finger through the detection of the changes in capacitance.
This technology has evolved within JDI to the extent that the company has succeeded in enhancing it to detect the changes in capacitance caused by the recesses and ridges of an individual's fingerprints. This further technological development made it possible to form JDI's new capacitive fingerprint sensor on a transparent glass substrate. JDI will expand the lineup to include larger or smaller sizes as well as this 8mm x 8mm sensor.
In the future, by utilizing JDI's flexible display technology, it is expected that greater degrees of freedom in product design will be enabled by developing thinner and flexible fingerprint sensors.
(1)Glass transparency to increase fingerprint sensor applications
Currently, most fingerprint sensors used in the marketplace are silicon-based, and thus non-transparent. JDI expects that the advantage of the high transparency of the glass substrate, which silicon-based sensors do not have, combined with a backlight will lead to the expansion of fingerprint sensors in new areas of application.
(2)Enabling easy security enhancements in various categories
Given that biometric smartphones and smart cars are becoming wide spread and the era of the Internet of Things (IoT) is underway, high security devices will be required nearly everywhere. Individual certification systems also require even higher security systems, and use fingerprint sensors. Transparent fingerprint sensors should improve the degrees of design freedom to enable such sensors to be installed in nearly every device to make security enhancement much easier. Moreover, JDI's glass-based capacitive fingerprint sensors will be able to replace silicon-based fingerprint sensors that are currently used for smartphone and notebook PC applications.
Japan Display Inc. (JDI) is a leading global manufacturer of advanced small- and medium-sized LTPS LCD panels. By leveraging its advanced technologies and the world's largest LTPS production capacity, JDI provides high resolution, low power consumption and thin displays for smartphones, tablets, automotive electronics, digital cameras, medical equipment and other electronic devices. JDI, which commenced operations in April 2012, was formed through the consolidation of the display panel businesses of Sony, Hitachi and Toshiba. The company's common stock is traded on the Tokyo Stock Exchange with the securities code number 6740. For more information please visit:
The information contained in this press release is accurate as of the date of issuance and is subject to change without notice. Information in this press release, other than statements of historical fact, constitutes forward-looking statements, which are based on available information, operating plans and projections about future events and trends. Forward-looking statements inherently involve risks and uncertainties that could cause actual results to differ materially from those predicted in such forward-looking statements.